منابع مشابه
Sphericity, cubicity, and edge clique covers of graphs
The sphericity sph(G) of a graph G is the minimum dimension d for which G is the intersection graph of a family of congruent spheres in Rd . The edge clique cover number (G) is the minimum cardinality of a set of cliques (complete subgraphs) that covers all edges of G. We prove that if G has at least one edge, then sph(G) (G). Our upper bound remains valid for intersection graphs defined by bal...
متن کاملThe Johnson-Lindenstrauss lemma and the sphericity of some graphs
A simple short proof of the Johnson-Lindenstrauss lemma (concerning nearly isometric embeddings of finite point sets in lower-dimensional spaces) is given. This result is applied to show that if G is a graph on n vertices and with smallest eigenvalue i then its sphericity sph(G) is less than cA2 log n. It is also proved that if G or its complement is a forest then sph(G) < c log n holds. Q 19%8...
متن کاملVector Space semi-Cayley Graphs
The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولSphericity and Sphericity Indices. A Non-Mathematical Approach on the Mathematical Basis for Restructuring Stereochemistry
Topicity terms for stereochemical relationships (homotopic, enantiotopic, diastereotopic, etc.) and topicity terms for stereochemical attributes (chirotopic and achiotopic) have been combined to discuss the stereochemistry of tetrahedral molecules. Stereochemical discussions due to such combined usage have exhibited complicated features that would cause misunderstanding or confusion. On the oth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1984
ISSN: 0166-218X
DOI: 10.1016/0166-218x(84)90113-6